

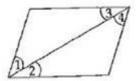
Section A

Question number 1 to 4 carry one mark each.

Q.1 Which is the greatest among $\sqrt{2}$, $\sqrt[3]{4}$ and $\sqrt[4]{3}$? **Q.2** If 2x+1 is one factor of the polynomial $2x^2 - x - 1$, then find the other factor. **Q.3** In the given figure, $\angle ABD = 66^{\circ}$ and $\angle ACD = 60^{\circ}$. If bisector of $\angle A$ meets BC at D, then find $\angle ADB$.

Q. 4 What do you mean by ordinate of point?

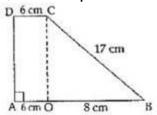
Section **B**


Question number 5 to 10 carry two marks each.

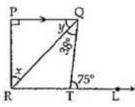
Q.5 Is zero (0) a rational number? Justify your answer.

Q.6 Factories': $3y^3 + y^2 - 3y - 1$

Q.7 In the figure, if $\angle AOB = 60^{\circ}$ and $\angle BOC = 2x$, then find the value of x so that AOC is a straight line.


Q.8 In the give figure; if $\angle 1 = \angle 3$, $\angle 2 = \angle 4$ and $\angle 3 = \angle 4$, write a relation between $\angle 1$ and $\angle 2$ by using an Euclid's axiom. Write the axiom also.

Q.9 A point is a distance of 4 units from z-axis and 5 units from the y-axis. Represent the position of the point in the Cartesian plane and also write its co-ordinates.


Q.10 Compute the area of the trapezium shown in the figure:

Section C

Question number 11 to 20 carry three marks each.

Q.11 Simplify : $\sqrt[4]{81x^3y^4z^{15}}$ Q.12 If $x = 2 + \sqrt{3}$; find the value of $x^3 + \frac{1}{x^3}$ Q.13 Using a suitable identity, evaluate $(43)^3 - (18)^3 - (24)^3$. Q.14 Let R_1 and R_2 are the remainders when the polynomials $f(x) = 4x^3 + 3x^2 - 12ax - 5$ and $g(x) = 2x^3 + ax^2 - 6x - 2$ are divided by (x-1) and (x-2) respectively. If $3x_1 + R_2 - 28 = 0$, find the value of 'a'. Q.15 Write any three Euclid's Postulate. Q.16 In the give figure, if the line segment AB is parallel to another line segment RS and 0 is the mid-point of As, then Show that : (a) $\triangle AOB \cong \triangle SOR$ (ii) 0 is also mid-point of BR

Q.18 Prove that if two lines intersect, vertically opposite angles are equal. **Q.19** On the graph paper, plot a point A(-2,-2). Reflect point A in x-axis and y-axis. Let these points be B and C respectively. Guess the measure of $\angle BAC$.

Q.20 The Perimeter of a triangular garden is 900 cm and its sides are in the ratio³ : 5 : 4. Using Heron's formula, find the area of the garden.

Section D

Question number 21 to 31 carry four marks each.

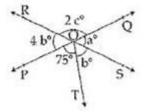
$$\frac{p}{1}: 0.38 + 1.27$$

Q.21 Express in the form of $\,^{q}$

Q.22 Rationalise the denominator of the following: $\sqrt{3} + \sqrt{5} - \sqrt{2}$ **Q.23** If ab + bc + ca = 0 find value of $\frac{1}{a^2 - bc} + \frac{1}{b^2 - ca} + \frac{1}{c^2 - ab}$

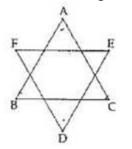
Q.24 Verify if -3 and 4 are zeroes of the polynomial $2x^3 - 3x^2 - 23x + 12$. If yes, then factorise the polynomial.

Q.25 Using long division method, show that the polynomial $p(x) = x^3 + 1$ is divisible by q(x) = x+1. Verify your result using factor theorem.


$$a^{3}+b^{3}+c^{3}-3abc = \frac{1}{2}(a+b+c)[(a+b)^{2}+(b-c)^{2}+(c-a)^{2}]$$

Q.26 Show that

Q. 27 For spreading the message "Save environment Save future" a rally was organized by some students of a school. They were given triangular cardboard piece ABC which they divided in to two parts by drawing the angle


bisectors BO and CO of base angles B and C. Prove that $\angle BOC = 90 + \frac{1}{2} \angle A$. what is the benefit of these types of rallies?

Q.28 Solve the equation a - 35=75 and state which axiom you use here. Also give two more axioms other than the axiom used in the above situation. **Q.29** In the figure, two straight lines PQ and RS intersect each other at 0. If $\angle POT = 75^{\circ}$, find the values of a, b and c.

Q.30 In the given figure, prove that $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F = 360^{\circ}$

Q.31 The angles of a triangle are $(x-40)^\circ$, $(x-20)^\circ$ and $(\frac{x}{2}-10)^\circ$. Find the value of x and then the angles of the triangle.

4 as the state